Testing Database Engines

Jinsheng Ba
National University of Singapore

Abstract—Database systems are widely used to store and query
data. Test oracles have been proposed to find logic bugs in such
systems, that is, bugs that cause the database system to compute
an incorrect result. To realize a fully automated testing approach,
such test oracles are paired with a test case generation technique;
a test case refers to a database state and a query on which
the test oracle can be applied. In this work, we propose the
concept of Query Plan Guidance (QPG) for guiding automated
testing towards “interesting” test cases. SQL and other query
languages are declarative. Thus, to execute a query, the database
system translates every operator in the source language to one
of the potentially many so-called physical operators that can be
executed; the tree of physical operators is referred to as the
query plan. Our intuition is that by steering testing towards
exploring a variety of unique query plans, we also explore more
interesting behaviors—some of which are potentially incorrect.
To this end, we propose a mutation technique that gradually
applies promising mutations to the database state, causing the
DBMS to create potentially unseen query plans for subsequent
queries. We applied our method to three mature, widely-used,
and extensively-tested database systems—SQLite, TiDB, and
CockroachDB—and found 53 unique, previously unknown bugs.
Our method exercises 4.85-408.48x more unique query plans
than a naive random generation method and 7.46 x more than a
code coverage guidance method. Since most database systems—
including commercial ones—expose query plans to the user, we
consider QPG a generally applicable, black-box approach and
believe that the core idea could also be applied in other contexts
(e.g., to measure the quality of a test suite).

Index Terms—automated testing, test case generation

I. INTRODUCTION

Database Management Systems (DBMSs) are fundamental
software systems used to store, retrieve, and run queries on
data. They are used in almost every computing device [1]-
[3], thus any bug has a potentially severe consequence. Logic
bugs, which refer to incorrect results returned by DBMSs,
are a particularly challenging category of bugs to find as
they silently compute an incorrect result—unlike, for example,
crash bugs [4], [5], which cause the process to be terminated.
Consider Listing 1, where the SELECT statement triggers a logic
bug that causes the returned result to unexpectedly contain a
record, while it should be empty. Finding such bugs requires
a so-called test oracle, which validates the DBMS’ result.
Recently, effective test oracles [6]-[8] have been proposed that
brought validating the results of such queries within reach.

Besides a test oracle, automatically finding logic bugs
requires a test case generation method. For finding logic bugs
in DBMSs, a test case refers to a database state and a query
on which the test oracle can be applied. Test case generation
techniques face two main challenges. First, “interesting” test

via Query Plan Guidance

Manuel Rigger
National University of Singapore

cases should be generated that stress various parts of the
DBMS to increase the chance of finding bugs in them. No clear
definition or metric on what an interesting test case constitutes
exists, as it is unknown in advance by which logic bugs a
DBMS is affected. Second, the test cases should be valid
both syntactically and semantically while also corresponding
to the structure imposed by the test oracle; for example, the
NoREC oracle requires a query with a wHERE clause, but no
more complex clauses (e.g., HAVING clauses) [7] while also
forbidding various functions and keywords from being used
(e.g., aggregate functions).

Both generation-based and mutation-based approaches have
been proposed to be paired with the above test oracles [6]—
[8]. SQLancer uses a generation-based approach in which test
cases are generated adhering to the grammar of the respective
SQL dialects as well as the constraints imposed by the test
oracles. Overall, this approach makes it likely to generate
valid test cases; we observed that about 90% of the queries
generated by SQLancer for SQLite are valid. However, the test
case generation approach receives no guidance that could steer
it towards producing interesting test cases. Recently, SQL-
Right [9] was proposed to address this shortcoming. SQLRight
mutates test cases aiming to maximize the DBMS’ covered
code, thus building on the success of grey-box fuzzing [10],
[11]. While SQLRight improved on SQLancer’s test case
generation in various metrics, code coverage alone was shown
to be an imperfect proxy metric for DBMSs [12] and stateful
systems in general [13], as it cannot precisely model the state
of databases. Despite using mutation operators that aim to
maximize the validity of queries, SQLRight achieves a lower
rate of valid queries of 40% [9]. Other test case generation
approaches have been proposed that aim at finding crash bugs
and thus disregard the test oracle’s constraints, which is why
we do not further consider them. These include mutation-
based approaches such as Squirrel [5] or DynSQL [14], and
generation-based ones such as SQLsmith [15] or RAGS [16].

In this paper, we propose Query Plan Guidance (QPG),
a technique that utilizes query plans to guide the test-case
generation process towards interesting test cases. A query
plan is a tree of operations that describes how an SQL
statement is executed by a DBMS. It is readily provided by
DBMSs—users can typically obtain a textual representation
using an EXPLAIN SQL statement—and is typically inspected
by DBMS users for tuning the performance of queries. Our
insight is that a query plan provides a compact and high-level
summary of how a query is executed, therefore, covering more
unique query plans increases the likelihood of finding logic

Listing 1. A bug found by QPG in SQLite due to an incorrect use of an
index in combination with a JOIN. Given the same SELECT, the left query
plan is produced if no index is present, while the right one uses the index.
CREATE TABLE tl(a INT, b INT);

INSERT INTO tl(a) VALUES(2);

CREATE TABLE t2(C INT);

CREATE TABLE t3(d INT);

INSERT INTO t3 VALUES(1);

CREATE INDEX 10 ON t2(c) WHERE c=3;

0NN AW~

SELECT
tl

* FROM
ON c=3

t2 RIGHT JOIN t3 ON d<>0 LEFT JOIN
WHERE tl.a<>0; -- fg fl1]12]9

10 QUERY PLAN

11 WITHOUT INDEX i WITH INDEX iO:

12]--SCAN t2 | --SCAN t2 USING

13 COVERING INDEX i0

14]--SCAN t3 |--SCAN t3

15 |--SCAN t1 |--SCAN t1

16 “--RIGHT-JOIN t3 “__RIGHT-JOIN t3
17 “--SCAN t3 “--SCAN t3

bugs. Consider Listing 1, which illustrates two scenarios of
executing test cases with SQLite. In the first scenario, the
CREATE INDEX statement highlighted in red is omitted, causing
the seLECT statement to return an empty result. This result
is expected, since column c in table t2 has no data and
the join condition c=3 is false. In the second scenario, the
CREATE INDEX statement is executed, which causes SQLite to
unexpectedly fetch the row fjlj2jg. An index is an auxiliary
data structure used by queries [17], which should not have
any semantic effect. While in both scenarios, the same query is
executed, the query plans shown below the test cases differ due
to the two different database states. The left query plan for the
correct execution indicates that the records from table t2 are
read sequentially (SCAN t2). In contrast, the right query plan
indicates that the DBMS used the index to read the data (SCAN
t2 USING COVERING INDEX i0), which was incorrect. Besides
indexes, various other factors can influence query plans (e.g.,
data characteristics).

To generate valid queries that correspond to the oracles’
constraints, we propose mutating the database state rather
than the queries. Specifically, we re-use the existing random
grammar-based generation approach of SQLancer [6] to gen-
erate the queries. However, we record all seen query plans
for a given database state and mutate this state when no new
query plans are observed, indicating that the current database
state’s potential for enabling unobserved query plans has
been saturated. We modeled the decision-making process for
selecting the most promising mutation—an SQL statement that
modifies the database state—as a multi-armed bandit problem
and assigned a high priority to the SQL statement that results
in the most new query plans across all executions. The multi-
armed bandit problem is a model in which a fixed limited set
of resources have to be allocated between competing choices
in a way that maximizes the expected gain [18].

We implemented QPG in SQLancer and evaluated it on
SQLite, TiDB, and CockroachDB. We found 53 unique, pre-
viously unknown bugs, all of which have been acknowledged

by the developers. Of these, 35 have already been fixed. Three
bugs in SQLite had been hidden for more than six years before
we found them, despite the extensive existing testing efforts
by the authors of SQLancer and SQLRight, demonstrating
the practical need for a more efficient test case generation
approach. To trigger many of the bugs, complex query plans
are required, indicated by the average length of query plans
being 2.47 longer than that of the previously found bugs.
In terms of efficiency, our QPG-based implementation covers
4.85-408.48 more unique query plans than SQLancer and
SQLRight in 24 hours.
Overall, we make the following contributions:

« We studied the query plans of the queries in previously-
found bugs to gauge the idea’s potential;

o We propose Query Plan Guidance as a general idea for
utilizing query plans for testing;

« We propose a concrete testing approach that mutates
database state rather than queries to be compatible with
existing test oracles;

« We implemented and evaluated the approach, which has
found 53 unique, previously unknown bugs in widely-
used DBMSs.

II. BACKGROUND

Database management systems. Database Management Sys-
tems (DBMSs) serve as an interface between applications and
back-end data, helping users to store, manipulate, and query
data based on an abstract data model. The relational data
model [19] is the most common model that has been adopted
by most modern DBMSs. In this paper, we focus on testing
such relational DBMSs.

Structured Query Language. The most commonly used lan-
guage for interacting with relational DBMSs is the Structured
Query Language (SQL) [20], which has been standardized by
ISO/TIEC 9075. SQL consists of many types of statements [21],
which can be classified into three main sub-languages:

1) Data Query Language (DQL), which provides a SELECT

statement to query data.

2) Data Definition Language (DDL), which is used to create
and modify the schemas of data objects, for example,
CREATE, DROP, and ALERT.

3) Data Manipulation Language (DML), which is used to
modify the contents of data objects, for example, INSERT
and UPDATE.

While DDL and DML statements can affect the database state,
queries (i.e., DQL statements) typically cannot. Our test cases
consist of DQL, DDL, and DML statements.

Query plans. A query plan is a tree of operations that
describes how an SQL statement is executed by a specific
DBMS. Although not specified by the standard, most mature
relational DBMSs, including the 10 most popular relational
DBMSs according to the DB-Engines ranking,! allow users to
query a textual representation of a query plan by prefixing
a query with ExpraiN. DBMSs cannot always determine

Uhttps://db-engines.com/en/ranking/relational+dbms

https://db-engines.com/en/ranking/relational+dbms

the most efcient query plan [22], [23], requiring users to TABLE |

understand and optimize performance-critical quereg, (by SUBJECTS FOR THE QUERY PLAN STUDY
providing hints to the DBMS) based on their query plans. For a
better debugging experience, exposed query plans may includ
additional information, such as the estimated cost or predicateCockroachDB 19.2.12 1.1M EXPLAIN (OPT)...

@BMS Version LoC EXPLAIN Statement

expressionsg.g, used inwHEREClauses). Database literature DuckDB 0.19 59K EXPLAIN...
distinguishes between logical and physical query plans [24],H2 2.0202 0.3M EXPLAIN...
the latter which is typically exposed by the DBMSs. While MariabDB 10425 3.6M EXPLAIN FORMAT=JSON'..

the logical query plan closely corresponds to the original MySQL 5733 38M EXPLAIN FORMAT=JSON....
declarative query, the physical query plan maps every logical PostgreSQL 1116 1.4M - EXPLAIN (COSTS FALSE)...
' : SQLite 3.30.0 0.3M EXPLAIN QUERY PLAN...

operator to a so-called physical one that can be executed by the,;5 3012 08M EXPLAIN...
DBMS. For example, to translate a read operation on a table,
the DBMS might choose one of potentially multiple so-called
physical access methods.g, a full table scan, or a partial TABLE Il

. QUERY PLANS OF THE QUERIES IN PREVIOUSLAFOUND BUGS LENGTH
scan with index). Similarly, to join two tables, the DBMS |\picates THE AVERAGE NUMBER OF OPERATIONS IN A QUERY PLAN
might decide between multiple join algorithmes g, hash join
or nested loop join) [24]. Various factors in uence what query Query Plans
plan a DBMS derives for a given query, such as characteristics
of the data stored in the database [25], the existence of
auxiliary data structures(g, indexes) [26], the tables as well CockroachDB 68 37 32 3.43

as views present in the database, and con guration options. DuckDB 75 59 18 200

DBMS Bugs Sum Unique Length

In this work, we use query plans in a black-box way, that is, H2 19 10 ! 3.70

. MariaDB 7 5 5 1.00
without regarding the semantics of operators to guide testing. MySQL 40 a5 22 103

Logic bugs. Logic bugs are bugs that cause a system PostgreSQL 31 9 3 5_33
to compute incorrect results. Recently, Rigger et al. pro- SQLite 193 118 62 214
posed several oracles [6]-[8] that have found hundreds TiDB 62 43 32 5.07
of unique bugs in widely-used DBMSs. In this work, AVg: 259

we used the two latest test oracles, which represent the
state of the art. Ternary Logic Partitioning (TLP) ex-
pects a query and derives multiple more complex queries,SubjectsWe chose the public bug reports froBQLancer
each of which computes a partition of the result to thess our subjectsSQLancerprovides a public listincluding all
check whether their results are equivalent. For exampieund bugs and corresponding test cases for 499 bug reports
from SELECT» FROMt0 and a random predicat®.co>0 , across 9 DBMSs. We excluded 4 bugs found in the DBMS
TLP derives SELECT » FROMt0 WHERE(t0.c0>0) , SELECT TDEngine, as this DBMS does not expose query plans. The
» FROMtO WHERE NOT0.c0>0) , and SELECT » FROMt0 query plan of a given query can vary over versions; thus, to
WHERE(t0.c0>0)ISNULL , whose combined records must bebtain accurate query plans, we chose the most relevant release
equivalent to the rst query. Non-optimizing Reference Engingersions when the corresponding bugs were found. The details
Construction (NoREC) [7] checks for inconsistent resulisf the chosen DBMSs are shown in Table I.
values of a predicate used in a query that the DBMS mightObtaining query plansFor all 495 bug-inducing test cases,
optimize and one that is used in a query that is dif cult tqve instrumented all queriesd., SELECTstatements) by using
optimize. For example, for a predicateco>0 , NOREC com- EXPLAIN statements as listed in Table |. Depending on the
pares the number of rows returned by a qUEEYECT «+ FROM DBMS, query plans might include various additional auxiliary
t0 WHERE(t0.c0>0) with how oftenTRUEIs contained in the information. We identi ed three such types. One type is the
result returned forsELECT (t0.c0>0) FROMt0 . Both oracles estimated coste(g, in PostgreSQL), which differs for almost
have constraints on the query formats. For example, NoREGery query. The second type is expressions/HERElauses,
requires awHeREclause, but forbids aggregate functions anghich are included in the query plan by some DBM8sy(
other more complex clauses. In principle, our method can @ckroachDB). The third type is random identi ers, which are
paired with any oracle. used to distinguish operations in a query plarg(MariaDB
and MySQL). To exclude such auxiliary information, we ac-
cordingly adjusted the parameters of ElPLAIN statements,

To investigate the potential of using query plans as guidangg shown in Table I. Lastly, we removed the names of tables,
we studied the uniqueness and complexity of query plans @éws, and indexes of the obtained query plans to distinguish
the queries in previously-found bugs. We hypothesized th@liery plans based on their structure only. This was based on

we would see a wide variety of query plans, suggesting thie intuition that two query plans with the same execution
a bug- nding technique optimized for exploring more unique

query plans might be effective. 2https://github.com/sglancer/bugs

1. QUERY PLAN STUDY

logic, but different table names, would be processed similarly
by the DBMSs €.g, SCAN t1, andSCAN t2).

Uniqueness analysiFable Il shows the query plan distribu-
tion. In total, we obtained 316 query plans, of which 57.28%
were unique. The number of query plans is lower than that
of test cases because 1) not all test cases have queries and 2)
some queries that previously exposed bugs were rejected by
subsequent versions of the DBMSs. The minimal percentage
of unique query plans is 30.51% in DuckDB. The maximum
one is 100.00% in MariaDB, due to a low number of test cases.
Overall, for the queries in previously-found bugs, the variety of
different query plans indicates that covering a wider variety of
guery plans might increase the likelihood of discovering bugs.

Query plans of the queries in previously-found bugs vary
signi cantly, as 57.28% of the query plans are unique.

Complexity analysisWe examined the complexity of the
P y y . . P y Fig. 1. Overview of QPG. The dashed lines refer to the data affected by
query plans of the queries in previously-found bugs. A quem/gthe next iteration.

plan with many operations is due to a complex database state

or query. For instance, in SQLite, a query plan that retrieves) i
data from two tables requires at least three operatisasn dif CUlt to meet using mutational approaches [9]. Compared
table 10, SCANtable t1, andMERGE results . which is more with other coverage-based grey-box testing tools for DBMSs,

complex thanscANtable 0 alone. As shown in theength SUch as Squirrel [5] and SQLRight [9], we consider our

column of Table II, the average number of operations per qudRfFthod as black-box testing, &3PG requires no access to
plan is 2.59, which illustrates that the majority of bug-relatetii® Source code of the DBMS and uses information readily
query plans are compact. We further found that the md¥ovided by mature DBMSs. Thus, the technique can also be
frequent query plan across eight DBMSsssANtable to, aPplied to commercial closed-source DBMSs.

which represents a sequential scan on a single table, withouPYStem overviewkigure 1 shows an overview of o@PG
using an index. For example, in SQLite, 26 of 118 queﬁgahzatmn based on Listing 1. Given an initial database state
plans consist of a single table scan. This demonstrates thatl - QPG generates a random SQL qugry&tand executes
the query plans for the previously-found bugs are simplg.on the database to validate the query's result using the test

While this could indicate that, compact and simple queR/aC'e- If the oracle indicates a bugPG outputs a bug report

plans are suf cient to trigger these previously found bugs—a”d restarts the testing process. Otherwise, it records the query

as suggested by the small-scope hypothesis [27]—it codign @nd appends it to the query plan pool &t Typically,
also be that existing approaches have focused their testing!B® €x€cution continues a2 with the same database state.

simple queries and database states. We speculate that covefA§eVer. if no new unique query plan has been observed after
more complex query plans might increase the likelihood &f xed number of |terat|onsQPG mutates the database state
discovering bugs. at 4 by applying a mutation operator to the current database

state to create a new one, assuming that this new state will
Query plans of the queries in previously-found bugs reSubsequently lead to new unique query plans being explored.
compact and simple, as the average number of operationg patabase States.l()

in a query plan is only 2.59.

The initial database state can be either randomly generated
or manually given. In our implementation, we generate it
by randomly executing DDL and DML statements. To avoid

To efciently detect logic bugs in DBMSs, we propose tGmpty database states, we exeCOREATE TABLEStatements
mutate databases witQuery Plan Guidance (QPGpwards (st, For example, to create the initial database state in
more unique and increasingly complex database states. @ifure 1, we execute lines 1-5 in Listing 1. We do not directly
insight is that the internal execution logic of the DBMS fOFnanipuIate database les, since they are highly structured [28],

a given query is re ected by its query plan and, thereforgng any unexpected byte may incur an error that would impede
covering more unique query plans increases the likelihood @ testing process.

nding logic bugs. Compared with naive random generation,

our method gradually mutates database states enabling suBseQuery Generation and Validation 2()

guent queries to cover more unique and complex query plansQuery generationWe generate queries whose results we
We chose to mutate database states rather than queries, ssnbsequently automatically validate to nd bugs. The gener-
test oracles have various constraints on queries, which ated queries must comply with two main constraints. First,

IV. APPROACH

gueries must be semantically valid with respect to the databaesult in queries triggering new query plans. We model this
state. For example, they must reference only existing t@sk as the Multi-Armed Bandit (MAB) problem [18], [36],
bles and views. Second, they must adhere to the constraintsch is a popular and ef cient method that has been used in
imposed by the test oracles. For example, the NoREC testious fuzzing works [37]—[40]. In MAB, a xed limited set
oracle requires avHEREClause, but forbids other clausesd, of resources has to be allocated between competing choices
HAVING or GROUP B) To address this, we adopt SQLancer'so maximize the expected gain. In our scenario, given a
rule-based random generation approach that generates qudingised computational resource, we choose the SQL statements
based on the SQL dialects' grammar adhering to the imposgthoices) to mutate database states to maximize the number
constraints. Many query generation approaches have beértovered unique query plans (gain).
proposed [12], [29]-[34], and our method can, in principle, To maximize the expected gain, an automated agent at-
be paired with any of these query generation methods. tempts to acquire new knowledge (called “exploration”) and
Validation. We use the state-of-the-art logic-bug oraeptimizes its decisions based on existing knowledge (called
cles NOoREC [7] and TLP [6] to validate the queries' re*exploitation”). In our problem scenario, given the knowledge
sults. Both are metamorphic testing approaches [35] artbat the gains of only some mutation operators have been ob-
given a query, derive another query whose result set 9erved, we consider selecting the next mutation operator from
used to validate the original query's result. In Figure Jgither explored or unexplored mutation operators. Making the
given the three tables and the test oracle, we generdtgision based on explored mutation operators (exploitation)
the querysELECT » FROMt2 RIGHT JOIN t3 ONd<>0 LEFT tends to increase the gain, but may miss potentially higher
JOIN t1 ONc=3 WHEREl.a<>0 . Since the test oracle indi- gain from unexplored mutation operators. Many algorithms
cates that the empty result returned is correct, executibave been proposed to strike a balance between exploration
continues at3. If the test oracle indicates a bug, we outpuand exploitation. We adopt the classic episode greedy algo-

the bug report and restart the testing process. rithm [41], which chooses the operator with the highest known
) gain with a certain probability and a random one otherwise.
C. Query Plan Collection. §) Our algorithm works as follows. At times when database

We collect query plans by instrumenting queries udiX state mutationd is invoked, we choose one mutation operator
PLAIN statements, which is the same approach as presentetbifowed by Equation 1k is the number of candidate mutation
Section Ill. In Figure 1, the statement to obtain the query playperators?;, is the known gain of the mutation operataat
iS EXPLAIN QUERY PLANSELECT * FROMt2 RIGHT JOIN t3 timet. is a xed probability ranging from 0 to 1; its default
ON d<>0 LEFT JOIN t1 ONc=3 WHEREtl.a<>0 . We obtain value is 0.7, which we determined to work well empirically.
the query plan (shown in the left part of lines 12-17 ifWith (1) probability, we choose the operator that has the

Listing 1), and remove table and index names. maximum known gain and randomly choose one otherwise.
We insert query plans into the query plan pool in which (
we store unique query plans. The pool is implemented as a

d N,
hash table in which the keys are query plans, and the values i) = argmax=iz M () (1)
are the corresponding query strings. Given a query plan, we random (k))
check whether the query plan exists in the pool, and insert itEncoding known gain®;. % is measured as weighted
if not. In Figure 1, the pool is initially empty, so we insertaverage gain—different from the standard algorithm, which
the query plan (the rst line at3). If no new query plan is uses an unweighted average—across all iterations where
inserted into the pool for a xed number of queries, we invoke/as chosen. A DBMS is a stateful system. The database state
4 aiming to cause the DBMS to explore more unique quedepends not only on the last applied mutation operator, but also
plans. Otherwise, we continue to test the DBMS using tlen the previous database state. Applying the same mutation
same database state 2t A higher number indicates that weoperator on changing database states creates different database
test the DBMS using more queries on a single database statates, so the gain of a mutation operator across iterations is not
while a lower one means that we test the DBMS using moiedependent and identically distributed. For the same mutation
database states. The number is set to 1,000 by default, whiglerator, the gain in the last iteration is closer to the real gain

we determined to work well empirically. on the last database state. To approximate the known gain, we
) use a weight average number in which the latter gain has a
D. Database State Mutation.4() higher weight than the former gain. Equation 2 is our equation

If no new query plan has been observed for a xed numbéor updating”; in each iterationQ is the gain for the last time
of queries, we invoke the database state mutadonwhich i was chosenw is the weight ofQ, which is a constant ranging
manipulates the database state, aiming to cause the DBMSrton 0 to 1; its default value is 0.25, which we determined
explore different query plans for the subsequent queries. to work well empirically. Independent from the number of
As mutation operators, we consider both the same DDierations, the prior gains only take {p w) weight for#;.
and DML statements used for generating the initial databaSer example, giverw = 0:1, %999y = 0:1, Q = 2 for the
state, such asREATE TABLECREATE INDEX andANALYZE A 1;00Q; iteration, the”j1p00) =0:1+(2 0:1) 0:1=0:29,
key challenge is to apply promising mutations that likelyhich is much higher than the unweighted average number

a xed number of tested queries. The number is con gurable
and is set to a reasonable default value of 1,000,000, which
we found to work well in our experiments (see Section V).

E. Implementation

We implemented the describ&@PGapproach irSQLancet
and subsequently refer to our prototype SQLancer+QPG
In addition, we updated SQLancer to support the latest version
of SQLite which has three new features, nanm®IgHT JOIN,
FULL OUTER JOIN and STRICT. We implemented our method
Fig. 2. The work ow of measuring the known gain at. in around 1,000 lines of Java code and adapted each DBMS-
speci ¢ component in additional 100 lines of Java code, such
as de ning the speci c statements for collecting query plans.
0:1+ (2 0:1)=1000 = 0:1019 and closer to theQ. For We designed our approach to be compatible with existing
ef ciency, all parallel testing processes share the sdme testing tools; thus, for théatabase Statesl and Query
Generation and Validation2 steps, we reuse the implemen-
Nsn) =i H(Q 0 MNy) W (2) tation of SQLancer We implemented the algorithm described
in Database State Mutatio as a standalone module that
Encoding instant gairQ. Q is measured by the proportionis reused across DBMSs. We used DDL and DML statements
of queries that explore new query plans when they are execugegbported bySQLanceras mutation operators (23 mutations
on the latest database state. The queries include those infgreSQLite, 13 mutations for TiDB, and 17 mutations for
query plan pool, and a set of newly generated queries baggsckroachDB) which may contribute to covering more unique
on the latest database state. The query plan pool includescglery plans, and the detailed list can be found in our artifact.
unique query plans and corresponding queries, which we M avoid a large number of tables and indexes causing a low
execute to evaluate how many new query plans are exploredf@sting throughput, we restricted their maximum number to an
the same queries. To ensure that the queries in the query Pabitrary, but reasonable limit—a maximum of 10 tables and
pool are always valid, we drop the invalid ones that are due 20 indexes.
the changes of the database state. We observed that, in practice,
this limits the pool to a reasonable size @;000 entries).
However, for some mutation operators, SUCITREATE TABLE To evaluate the effectiveness and ef ciency QPG in
none of these queries is related to the newly-created table, sding bugs in DBMSs, we seek to answer the following
no new query plan is observed. It would be unjust to judge itgiestions based on our prototyB@Lancer+QPG
gain as zero, so we generate a set of new queries and exan@ne New Bugs. Can QPG help with nding new bugs? Are
how many new query planS are eXplorEd. For example, after Comp|ex query p|ans required to nd these bugs?
applying the mutation operatar 2=50 queries in the query Q.2 Covering unique query plans.Can QPG cover more

plan pool and10=20 queries in the set of newly generated ynique query plans than naive random generation and
queries explore unseen query plans, meaning that we compute code-coverage guidance methods?

V. EVALUATION

the instant gain a = 2=50 + 10=20 = 0:54. 'Q.3 Bug Finding Ef ciency. CanQPG nd bugs more ef -
Figure 2 shows the work ow of measuring the known gain cjently than naive random generation and code-coverage

A at 4. If the mutation operatoB is chosen in iteration guidance methods?

due to its highesi(t), we update®s in the next iteratiort+1 Q.4 Sensitivity Analysis. What is the contribution of each

with the queries that are generated after iteratioand the component ofQPG? How doesQPG perform under

queries of the query plan pool in iteratian Following that, different con gurations?

we calculatg (t +1) and choose the mutation operalor — 1ggteq DBMSaNe tested SQLite, TIDB, and CockroachDB,

In Figure 1, we applyCREATE INDEXi0 ONt2 () WHERE gQLite is the most popular embedded DBMS—embedded
c=3, which creates an index at 1. Suppose we generateppg\ss are built together with and run in the same process as
the same query a2, then we observe the new query planne application—and is used in every 10S and Android smart-
shown on the right in lines 12-17 in L|st|n_9 1 and insert it ®hone [1]. TIDB and CockroachDB are popular enterprise-
the query plan pool. As a result, the bug is expose@at 355 DBMSs, and their open versions on Github are highly

Lastly, we clear the database state after a xed number ghpylar as they have been starred more than 31.9k and 25.2k
tested queries aiming to maximize the number of covergghes They are widely used and have thus also been used
unique query plans. In general, by gradually mutating thg other DBMS testing works [5], [6], [8], [9]. We did not
same database state, we explore more unique and increasigglysider other popular DBMSs due to various reasons. For

complex database states. However, the current database ggg\é@nme, for MySQL and closed-source DBMSs, bug xes can
may limit the possible state space to mutate into, which is why

we clear the database state and restart the testing process aftettps:/github.com/sglancer/sglancer

TABLE Il . . .
THE NUMBER OF NEW BUGS FOUND BYSQLancer+QPG Listing 2. A bug in the RIGHT JOIN feature of SQLite.

1 CREATE TABLEtl(a CHAR;
2 CREATE TABLEt2(b CHAR;
DBMS Crash Error Logic All 3 INSERT INTO t2 VALUESX);
) 4 CREATE TABLEt3(c CHAR NOT NuUlL
SQLite 0 5 23 28 5 INSERT INTO t3 VALUESY);
TiDB 2 4 3 9 6 CREATE TABLEt4(d CHAR;
CockroachDB 3 11 2 16 7
Sum: 5 0 8 53 8 SELECT* FROMt4 LEFT OUTER JOINt3 ON TRUE
' INNER JOIN t1 ON t3.c=" RIGHT OUTER
JOIN t2 ON t3.c=" WHERE3.c ISNULL;

¢ i
be validated only after new releases; until then, it is dif cult to
identify new bugs, as already-known bugs might be repeatedly
triggered. Furthermore, for some DBMSs, such as MySQL, Listing 3. A bug injson_quote function of SQLite.
many previously-reported bugs remain un xed, impeding th ggggg I/f\E?/I_/Eﬁb)(a AEHQE‘LECTJ_SM(TRUB:
testing process, which was also noted in prior work [6]. AS |NSERT INTO t1 VALUES (x):
a black-box methodQPG supports any DBMS, regardless of4
what programming languages it is written in; SQLite is writterp SELECT = FROMv1, t1 ~ WHERE NOTson_quote(b); --
in C, while TiDB and CockroachDB are written in Go. For Q1, (IR
Q2, and Q4, we used the latest available development versions
(SQLite: 3.39.0, TiDB: 6.3.0, CockroachDB: 23.1). For Q3, to
make a fair comparison, we chose the historical versions ofBugs overview.Table Il shows the number of unique,
DBMSs that all tools have tested and can nd bugs in (SQLit@reviously unknown bugs found bgQLancer+QPG We
3.36.0, TiDB: 4.0.15, and CockroachDB: 21.2.2). found 53 bugs in total, all of which have been con rmed.
Baselines.We comparedSQLancer+QPGwith SQLancer Of these, 35 have already been xed. Althou§®Lancerhad
and SQLRight While both of them have been designed tbeen extensively applied to these DBMSs, we were still able
nd logic bugs, their test case generation techniques diffén nd these bugs with the help dPG. Of the 53 bugs, 28
SQLancerimplements a naive random generation method. Were logic bugs found by the test oracles TLP and NoREC,
is the baseline on whicBQLancer+QPGs built. It has been and 25 bugs were associated with crashes or internal errors.
starred more than 1,000 times on GitHub and is widely used bhis demonstrates that the complex database states generated
companiesSQLRightis the state-of-the-art tool and uses codésy QPG are bene cial not only to nding logic bugs, but also
coverage guidance. By comparing with them, we gain insights other kinds of bugs. Although CockroachDB used the TLP
into the bene ts ofQPG against naive random generation andracle in their Continuous Integration (Cl) procésse still
code-coverage-guided methods for nding logic bugs. found 16 previously unknown bugs usigPG. For the new
Experimental infrastructureWe conducted all experimentsfeatures in SQLiteQPGfound 13 bugs iRIGHT JOIN, 2 bugs
on an Intel(R) Xeon(R) Gold 6230 processor that has 40 FULL JOIN, and no bug insTRICT. We give two examples
physical and 80 logical cores clocked at 2.10GHz. Our tef found bugs as follows.
machine uses Ubuntu 20.04 with 768 GB of RAM, and a Example 1: a bug in theiGHT JOIN feature. Listing 2
maximum utilization of 40 cores. We repeated all experimeng§iows a test case exposing a logic bug that we found in

10 times for statistically signi cant results. SQLite. ThesELECT statement incorrectly returns an empty
result, because of an incorrect optimizationisfiuLL when
Q.1 New Bugs used with aRIGHT JOIN. The query plan of theseLECT

statement is six operations long: scanning all tables once in

We ran SQLancer+QPG during approximately two four operations, and joining tabte with another scan or
months—during which we also implemented the approachis two operations. The query plan is relatively long, because
aiming to nd bugs. To better demonstrate the underlying issjeining tables typically involves multiple operations. 13 bugs
for each bug found, we minimized the test case both using B- SQLite were in therRIGHT JOIN feature, in whichQPG
Reduce [42] and manually. After reporting the bugs to thgenerates more complex database states to nd bugs.
developers, we suspended the testing process until the bugxample 2: a bug in JSON featurgisting 3 is another
was xed to avoid duplicate reports whenever possible; wheogic bug that had existed in SQLite since July 23, 2016. The
bugs were not xed within a timespan of weeks, we reportesk EcT statement incorrectly returns an empty result because
multiple bugs that we suspected to be unique. The bugsdhan incorrect optimization of thgon_quote function in the
SQLite were usually xed within 24 hours, while the bugscontext of aviEw, which is necessary to nd the bug. The
in TiDB and CockroachDB were usually xed within severalbug cannot be found if the second line is replacectchgATE
weeks. As a result, we focused on testing SQLite. We use@BLE vi(b) AS SELECTjson(1) . In SQLite, we found three
NOREC [7] and TLP [6], which are the state-of-the-art oracles
supported by botlsQLancerand SQLRight “https://github.com/cockroachdb/cockroach/commit/777382e6

TABLE IV TABLE V
QUERY PLANS OF THE QUERIES IN NEWLY FOUND BUGS THE AVERAGE AND MEDIAN NUMBER OF QUERY PLAN LENGTHS ACROSS
10 RUNS IN 24 HOURS. ONLY 6 HOURS ARE SHOWN FORTIDB AND
COCKROACHDB BECAUSE OF CRASHES

DBMS Al Unique Length

SQLite 51 29 5.55 SQLancer SQLRight SQLancer+QPG

TiDB 12 9 5.67 . . .

CockroachDB 6 6 783 DBMS Avg Median Avg Median Avg Median

AV 6.35 SQLite 2.95 200 217 1.00 4.69 4.00
TiDB 3.97 2.00 - - 15.04 8.20
CockroachDB ~ 4.55 4.00 - - 8.87 6.90
Avg: 3.82 267 217 1.00 9.53 6.37
TABLE VI

THE LINE AND BRANCH COVERAGE ACROSSLO RUNS IN 24 HOURS.

SQLancer SQLRight SQLancer+QPG

DBMS Line Branch Line Branch Line Branch

SQLite 30.3% 22.7% 48.1% 38.9% 32.6% 24.4%

Fig. 3. The average number of unique query plans across 10 runs in 24 hours.
We could run TiDB and CockroachDB only for 6 hours due to crashes. found several crash bugs that remained un xed during our
evaluation. We could rusQLRightonly on SQLite, asSQL-

bugs that had been hidden for more than six years, aﬁbght does not support TIDB and CockroachDB. Table V

SQLancer+QPGs the rst tool to nd them despite extensive ShOV_VS the average and median Ie_.\ngths of query plans of the
efforts by the authors a8QLancerand SQLRight gueries executed across 10 runs in 24 hours.

. : Results On both metrics, the number of unique query
Th I f lafs. . .
e uniqueness and complexity of query plafs.better plans and their complexitySQLancer+QPGelearly outper-

understand how and wheth@PG enables exploring a variety . i
forms SQLancerand SQLRight SQLancer+QPGexercises
of query plans, we analyzed the query plans of the queri $5-408.48 more unique query plans th Lancerand

in Table IIl. In total, we obtained 69 query plans, of whic . .
63.77% are unique. This further demonstrates the diversity o'f16 more than SQLRight CockroachDB provides ne-

rained query plans, which is wh$QLancer+QPGmost
query plans. On average, the length of query plans of quer & ’
was 6.35. In comparison with Table Il, where the averagf early outperformedsQLanceron this DBMS. The growth

number of operations in a query plan was 2.59, more compl © ?fSQLanﬁe{;QTﬁ? tT'DB_ st?%n?lflesTglthround > hours
guery plans are required to expose these newly found bu ge 1o a crash bug that terminate el SErver process.

. : able V shows that the average length of query plans in
and QPG was successful in causing them to be generated'SQLanceHQPGs 1.59-3.79 longer than foiSQLancer and

With the help of QPG, we found 53 unique, previousl 2.16 longer than forSQLRight To mitigate randomness,

unknown bugs where the average length of query plan of'® measured the Vargha-Delaney [4ﬂ1£) _and Wilcoxon
queries is 6.35 rank-sum test [44]) of SQLancer+QPGagainstSQLancer

A1, measures theffect sizeand gives the probability that
. . random testing ofSQLancer+QPGis better than random
Q.2 Covering Unique Query Plans testing of SQLancer(i.e., A1, > 0:5 meansSQLancer+QPG
We evaluated whetheBQLancer+QPGcan cover more s better). The Wilcoxon rank sum testis a non-parametric
unigue query plans thaBQLancerand SQLRightin 24 hours. statistical hypothesis tesb assess whether the result differs
Our study in Section Il shows that query plans in previouslyscross both tools. We reject the null hypothesigik 0:05,
found bugs are diverse, so covering more unique query plafgat is,SQLancer+QPG®utperformsSQLancemith statistical
likely increases the probability of nding bugs. We designedigni cance. For both metricsf1, = 1 andU < 0:05 for
SQLancer+QPGto explore more unique and complex quensQLancer+QPGagainstSQLancemn all DBMSs. The results
plans thanSQLancer We used the TLP oracle, which is theshow that our algorithm continuously generates signi cantly
only test oracle that is supported by all DBMSs we consideragiore unique and complex database states for testing.
Measurements Figure 3 shows the average number of
unique query plans covered by all tools across 10 runs| QPG exercises 4.85-408.48 more unigue query plan
24 hours. We recorded the query plans every 15 minutes g than a naive random generation method and 7.46ore
removed the names of tables, views, and indexes as descri than a code-coverage guidance method.
in Section lll. For TiDB and CockroachDB, we could ru
SQLancer+QPGat most for 6 hours, becauS®Lancer+QPG Code coverageWhile we were primarily interested in

TABLE VI
THE NUMBER OF ALL AND UNIQUE BUGS FOUND ACROSSLO RUNS.

SQLancer SQLRight SQLancer+QPG
DBMS All Unique All Unique All Unique
SQLite 2 1 2 1 4 2
TiDB 56 10 - - 118 12
CockroachDB 4 2 - - 8 3
Sum: 62 13 2 1 130 17

Fig. 4. The average number of covered unique query plans to evahate

covering more unique query plans, code coverage is a Comn;':8P]tributions of algorithm components across 10 runs in 24 hours.
metric of interest that also gives some insights on how much

of a system might be tested. Thus, we evaluated the line

and branch coverage of all three tools. Since TiDB and

CockroachDB are written in Go, which is not supported

by SQLRight we measured code coverage only for SQLite.

Table VI shows the average percentage of line and branch cov-

erage across 10 runs in 24 hours. AlthougQLancer+QPG

does not aim to maximize code coverag@Lancer+QPG

still outperformsSQLanceron both line coverage and branch

coverage because of more unique query plans cov&ed-

Right clearly achieves the highest coverage. The reasons for

this are that 1)SQLRightwas designed to increase codeig. 5. The average number of covered unique query plans bNGREC
coverage, 2)SQLancerand SQLancer+QPGonly generate oracle across 10 runs in 24 hours. The y axis uses a log scale.
SQL statements for the core logic of DBMS, whiQLRight

produces all kinds of SQL statements by parsing the grammszinéni cantl . . .
. . - : y slow down the testing process and hinder nding
les from DBMSs, and 3) SQLRightprovides high-quality iher bugs, the number of unique bugs is much smaller than the

or I
seeds that already cover 34'1A) line coverage and 26% imber of all bugs. In TiDB, we found several easy-to-reach
branch coverage, outperforming the other tools even with gs inJoiNs, which do not require complex database states,

: : : ; 0
mutations. Since SQLite achieves 100% branch COVEragelline number of all bugs is much higher than for the others.

their in_ter_nal testin_g’i, we believe_that hi_gher code COVETra9Ghe results further show that bugs can be more ef ciently
has a limited contribution for nding logic bugs. found by exploring more unique query plans.

Q.3 Bug Finding Ef ciency X)
QPG nds previous bugs 1.4 faster than a naive rando

generation method and 17faster than a code-coverage
guidance method.

We evaluated whetheBQLancer+QPG nds bugs faster
than SQLancer and SQLRight To this end, we ran
SQLancer+QPGSQLancer and SQLRightfor 24 hours with
the TLP oracle. We used a best-effort method to distingui
unique bugs by checking whether 1) stack traces are the sa
(crash bugs); 2) error messages are the same (error bugs); JpP evaluate the contribution dQLancer+QPG compo-
SQL clause structures are the same (logic bugs), such as f¥¢#ts, we performed a sensitivity analysis.
bugs' queries that only hawaGHT JoIN andGrouP Belauses — Contributions of algorithm component©ur major con-
are deemed to be duplicate bugs. tributions arequery plan collection 3 and database state

Table VII shows the sum of all bugs and only assumedautation 4 shown in Figure 1. To assess their contributions,
unique bugs found by each tool in 24 hours and 10 runde derived a new con guratiorBQLancer + QPG that
Since crash bugs terminate the whole process, all experime#ftgbles only the query plan collectio, and randomly
concluded in less than 24 hours until the rst crash wa@Pplies mutations in4. Figure 4 shows the average num-
observed (SQLite: 9 hours, TiDB: 1 hour, and CockroachDier of covered unique query plans across 10 runs in 24
16 hours). We did not restart the testing process as this woti@urs with the TLP oracleSQLancer+QPG outperforms
disadvantag&QLancer+QPGy making it lose the databaseSQLancer + QP G;, demonstrating the contribution of .
states. OverallSQLancer+QPGfound 2 more bugs and SQLancer + QP G, outperformsSQLancer demonstrating
1.4 more unique bugs thaBQLancer 65 more bugs and the contribution of 3. SQLancer+QPGhas a higher growth

17 more unique bugs thaSQLRight As duplicate bugs rate thanSQLancer + QP G, because4 gradually learns
which mutation operators are promising. Due to the crash

Shttps:/iwww.sglite.org/testing.html#medc bugs, we ran TiDB and CockroachDB for only 6 hours.

.g Sensitivity Analysis

Fig. 7. How often a mutation was executed for the ve most frequently
executed mutations for SQLite, TiDB, and CockroachDB across 10 runs.

either create other kinds of tables that are unique to SQLite
or change the schema of existing tables usinger This is
Fig. 6. The average number of covered unique query plangabying the expected, as more kinds of tables subsequently cause SQLite
maximum number of queries per database statacross 10 runs in 24 hours. {q explore more query plans. Despite frequently creating ad-
ditional tables, we did not observe excessive execution times,
as we limited the maximum number of tables and indexes.
gor TiDB and CockroachDB, the number of mutations is
juch lower than that for SQLite, as we could run them
o¥ only up to 6 hours.QPG favors the mutationCREATE
INDEX for TiDB, because indexes allow it to use more ef cient
ysical operators when reading data. For CockroachDB,
G favors the mutatiorseT SESSION because it changes
e system options, which can have an impact on the query
plan. QPG favors creating tables as various types of tables
are supported in SQLite. Overall, all DBMSs have common
frequent mutations, such &REATE TABLE yet have distinct

Sensitivity of maximum queries per datahasBoth frequent mutations, such &€T, depending on the various
SQLancer+QPGndSQLancethave a con guration to control q - ' » dep 9
cparactenstlcs of DBMS.

the number of tested queries before clearing database sta)
and starting a fresh testing instance. The default value f ﬁisor all three anglysesA‘lz = 1 andU < 005 fpr
both is 1,000,000. Often, starting a fresh testing instance; Q_Lancer+QPGaga|nst SQL?‘UC‘“”.""”. DBMSs, which
1 may result in a higher number of covered unique que}g)dlcates the results are statistically signi cant.
plans. To evaluate whethe8QLancer+QPGstill performs
well when more frequently resetting database states, we ad-
justed the number to 10,000 and 100,000, and evaluated th&uzzing.Fuzzing is an automatic software testing technique
number of their covered unigque query plans. Figure 6 showsat generates or mutates inputs to target programs for nding
the average number of covered unique query plans undeash bugs [45]. In recent years, it has gained increased
the various maximum number of queries per database statttention, because of the success of the coverage-guided grey-
SQLancer+QPGgains a signi cant advantage ov8QLancer box fuzzers such as AFL [10], [11], which instrument target
in all experiments. We clearly see that the rate of newlgrograms to record code coverage which is subsequently used
discovered query plans &QLancelstagnates over time, while to mutate inputs to maximize code coverage. A plethora of
SQLancer+QP@ rate continues to increase. Con guring thewvorks [46] have been proposed to improve fuzzing in various
number is a trade-off sinc&QLancer+QPGcreates more aspects. While QPG relates to grey-box fuzzing, we focus on
complex query plans with a higher number of maximumnding logic bugs and DBMSs speci cally, and guide test case
queries per database state and more unique query plans @iheration by query plans rather than code coverage.
a lower number. A user can adjust the con guration option Finding logic bugsVarious techniques have been proposed
depending on the testing goals. to nd logic bugs in DBMSs. Differential testing [47] is
Sensitivity of mutationsTo evaluate the contribution of a general technique that compares the outputs of multiple
each mutation, we examined how often each mutatian, (systems for the same input to detect potential discrepancies
SQL statement) was executed across 10 runs in 24 hounslicating bugs; various approaches use it as a test oracle
Figure 7 shows the ve most frequently executed mutatiorfer nding logic bugs by using different DBMSs [16], [48],
for each DDBMS. The most frequently-executed mutation f¢49] or different versions of a DBMS [4], [50]. While such
SQLite iscREATE TABLEOther frequently executed mutationsapproaches have successfully found bugs, they are prone to

Sensitivity of oraclesWe also evaluate®QLancer+QPG
with NoREC, which is the second state-of-the-art oracl
Figure 5 shows the average number of covered unique qu
plans across 10 runs in 24 hours for NOREC oraSl@Lancer
lacks a NOREC oracle for TiDB, so we exclude it here. Al
tools have a higher number of covered unique query plans w!
the NoREC than with the TLP oracle, because of differe
constraints on queries from NoREC and TLP. Similar to TL
SQLancer+QPains a signi cant advantage oveQLancer
and SQLRightwith the NOREC oracle.

VI. RELATED WORK

	Introduction
	Background
	Query Plan Study
	Approach
	Database States. (①)
	Query Generation and Validation. (②)
	Query Plan Collection. (③)
	Database State Mutation. (④)
	Implementation

	Evaluation
	Related Work
	Conclusion
	Data Availability
	References

